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SUMMARY 

The ‘two-colour lattice gas model’ is applied to the analysis of shear layers between two parallel flows with 
different velocities U1 and U,. Two cases, (a) U1= 0.4, Uz = 0.2 and (b) U, = 0.4, Uz = 0.0, are calculated and 
compared with the theoretical solutions. We obtain good agreement between theory and calculations in the 
velocity profiles of the shear layers. It is found that this model can simulate complicated physical phenomena of 
shear layers at the microscopic level. 
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1. INTRODUCTION 

In the field of computational fluid dynamics (CFD) the Navier-Stokes (N-S) equation is conventionally 
discretized based on the finite difference method (FDM), finite element method (FEM), etc. and is 
solved numerically to obtain its solution. Various numerical methods have been established in CFD in 
recent years and have attained great success in many fields with the simultaneous improvement in 
computer performance. As is well-known, the N-S equation is the governing equation of a fluid based 
on continuum theory in which the fluid is regarded as a macroscopic physical model. As an opposite 
approach, it has been suggested that a microscopic physical model called the ‘cellular automaton (CA)’ 
can be used to simulate complicated physical phenomena.14 The CA comprises regular lattice arrays 
with discrete state variables. A system composed of CAs evolves uniformly according to predefined 
simple local rules. Several patterns similar to real phenomena in nature can be formed by applying 
these operations repeatedly. 

Recently the ‘lattice gas model’ based on the CA has received much attention as a new 
computational method5-* because its completely discrete nature matches massively parallel hardware 
architecture very This model imitates the motion of particles in a very simplified microscopic 
world in which both space and time are completely discretized. It has begun to be applied to numerical 
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simulations for various complicated physical phenomenal 
reaction and so on. 

In this paper we have used a two-colour lattice gas 
model by applying it to the analysis of shear layers. 

such as molecular diffusion, chemical 

and evaluated the validity of this 

2. TWO-COLOUR LATTICE GAS MODEL 

We have adopted the two-dimensional ‘two-colour lattice gas 
introduced by Frisch et al.’ 

In the original FHP model the physical space is discretized into many regular triangular meshes and 
time is discretized into unit time steps. Particles with both unit mass and unit speed are located on 
lattice sites at integer time steps. Since the lattice is hexagonal, each particle has a velocity 
corresponding to one of six possible directions and moves in its velocity direction along lattice links 
from a certain lattice site to its nearest neighbour during a unit time step (translation process). The 
velocity vector ci in the ith direction is defined as 

based on the FHP 

ci = cos - sin - ( z =  1, ..., 6 ) .  ( (3’) . (3’)) 
In addition, we can include a ‘rest particle’ with zero velocity co = (0, 0) which stands still on lattice 
sites and participates in collisions. If several particles meet together on the same lattice site, a collision 
which conserves both the mass (the total number) and total momentum of the particles occurs and the 
particles instantaneously change their direction of motion (collision process). The configuration of the 
particles is updated at every time step by these two successive processes, as illustrated in Figure 1. 
Moreover, the exclusion principle is imposed, so that only one particle moving in a given direction can 
exist at a given site and time. Therefore the state of the particles at each site can be completely 

Figure 1. Time evolution 
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represented by seven Boolean variables ni (i = 0, . . . , 6) ,  each of which takes the value ‘0’ or ‘ 1 ’ 
according to the absence or presence of a particle with velocity ci, respectively. 

Since all particles are identical in the original model, it cannot deal with phenomena such as a 
mixture of different kinds of fluids. In the two-colour lattice gas model, however, two colour labels 
which make it possible to distinguish different particle types, e.g. ‘red’ and ‘blue’, are added to the 
particle states. Note that although red and blue particles can coexist at the same site, they cannot 
occupy the same direction at the same time in order to satisfy the exclusion principle described above. 

We extended the 76 collision rules of the original FHP-I11 model to include two different colour 
 label^.'^,'^ There are 2084 collision rules among 3’ possible pre-collision states and they all conserve 
the mass, momentum and colour of the particles at each site, as illustrated in Figures 2(a) and 2@). 
Note that collision rules such as shown in Figure 2(c), which exchange only colours but do not change 
the colour-blind particle configuration, are also involved. If there are more than two post-collision 
states, one of them is selected with equal transition probability. 

The Boolean variables for red and blue particles at a site at position r and time t are denoted by 
r,(r, t )  and bi(r, t )  respectively and their corresponding ensemble averages are expressed as Ri(r, t) and 
Bi(r, t). Thus the mean population Ni(r, t), which represents the average number of particles moving in 
the ith direction, is given as 

N(r, t )  = R;(r, t )  + Bi(r, t). (2) 

As macroscopic quantities, the density p, mean velocity u and concentration of red particles, C, are 
defined as 

pC = C R;. 
i 

Ipre-collision1 postcollision I transition 
State State probabiliq + 

I t  
Figure 2. Examples of collision rules: (a) binary head-on collisions; (b) symmetrical triple collisions; (c) colour exchange 

collisions 
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The conservation laws at the microscopic level for the mass, momentum and concentration of red 
particles are reduced to the continuity equation, the Navier-Stokes equation and the concentration 
equation respectively, given as 

atp + aupucc = 0, (6)  

atpc + a,pcu, = a,D(p)a,pc (8) 
where v@) is the kinematic viscosity, D(p) is the diffusion coefficient and g(p)  is a factor which results 
from the discreteness of the lattices. v(p)  and g@) are given as 

(9) 
1 1 

= 28d(l - d)[l - 8d(l - d) /7]  - 8’ 

where d = p/7 is the average density per direction. 

3. SIMULATION RESULTS AND DISCUSSION 

3.1. Outline of numerical simulations 

We applied the two-colour lattice gas model to the analysis of shear layers between two parallel 
flows with different velocities. 

The rectangular box shown in Figure 3 is the computational domain. We divided this domain into 
1024 x 512 triangular lattices and partitioned it into upper and lower regions of the same size, as 
illustrated in Figure 3. The mean velocities in the upper and lower regions are denoted by U, and U2, 
respectively. The characteristic length is H/2, which is the half-width of the duct in the direction 
perpendicular to the flow, and the characteristic velocity is U,, which is the faster speed in the upper 
region. The Reynolds number is 301 with the use of an efficient kinematic viscosity v,tf = v@)/g(p). 

Initially the upper and lower regions are randomly filled with blue and red particles of density 
p = 2.0 respectively, so that the mean velocities in both regions may become uniform and parallel to 
the horizontal axis eveqwhere. We imposed free-slip boundary conditions on the upper and lower 
walls parallel to the flow and periodic boundary conditions on the inlet and outlet boundaries. The free- 
slip boundary condition is realized by making the particles incoming to a boundary reflect specularly. 

Figure 3. Computational domain 



Plate 1. Isoconcentration lines of red particles from C = 0.0625 to 0.9375 and colour maps corresponding to 
distribution of coloured particles. Pure red and blue colours represent C = 1.0 and 0.0 respectively 
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We performed numerical simulations for two cases, (a) U1 = 0.4, U2 = 0.2 and (b) U1 = 0.4, 
U2 = 0.0. We calculated the development of shear layers until the 10,000th time step in each case. 

3.2. Projiles of mean velocities 

We calculated the mean velocities by averaging over 16 x 16 sites at 2000, 4000, 6000, 8000 and 
10,000 time steps. Figure 4 shows the relationship between the dimensionless co-ordinates 
r]  = y / m  and the horizontal components of mean velocities divided by U, at a position x = 1 .OH 
from the inlet boundary. Note that these velocity profiles were obtained by removing the colour labels, 
i.e. by regarding red and blue particles as identical. Under this procedure the two-colour lattice gas 
model corresponds to the original FHP model. We have also plotted a theoretical ~olu t ion '~  in Figure 4. 
Although we observe statistical numerical fluctuations in Figure 4 because the plotted profiles are 
instantaneous values at each time step, most of them are distributed around the theoretical solution. We 
thus obtain good agreement between theory and calculations. From these results we have verified that 
this model is valid enough to examine shear layers. 

3.3, Concentration of red particles 

We also calculated the concentration C of red particles by counting the number of particles of each 
colour over 16 x 16 sites at each time step. Plate 1 shows isoconcentration lines from C=O.O625 to 
0.9375 and colour maps corresponding to the distribution of coloured particles at 5000 and 10,000 
time steps in both cases. In case (a) it is found that the distribution of isoconcentration regions is nearly 
laminar and stable and that uniform diffusion of different-coloured particles occurs mutually in the 
direction perpendicular to the flow. On the other hand, in case (b) we can clearly observe the 
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Figure 4. Horizontal velocity profiles in direction perpendicular to flow at position x = 1 .OH from inlet boundary at 2000, 4000, 
6000, 8000 and 10,000 time steps 
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Figure 5 .  Concentration profiles of red particles in direction perpendicular to flow at position x = 1.OH from inlet boundary at 0, 
2000, 6000 and 10,000 time steps 

development of a Kelvin-Helmholtz instability at the interface between the two different-coloured 
fluids, as obtained in Reference 13. In this case the mixture of particles is promoted by the flow 
instability in addition to molecular diffusion. Figure 5 shows concentration profiles of red particles at a 
position x =  1.0H from the inlet boundary at representative time steps. As time goes by, the initial 
stepwise discontinuity of the concentration at the interface is gradually smoothed out and the 
concentration varies continuously within the shear layers in both cases. However, in case (b) the 
distribution of the concentration deviates considerably from that of ordinary diffusion phenomena. 
This is because the Kelvin-Helmholtz instability near the interface disturbs the uniform diffusion of 
particles. All discrepancies between the two cases in Plate 1 and Figure 5 are caused by the difference 
in relative speed between the two parallel flows. 

4. CONCLUSIONS 

In the present study we applied the two-colour lattice gas model to the analysis of shear layers and 
successfully obtained good numerical results which correspond well to the theoretical solution. 
Moreover, we could simulate a Kelvin-Helmholtz instability which is very similar to that observed in 
real phenomena. Although we need to evaluate the numerical results more quantitatively in detail, it is 
considered that this model is applicable to diffusion problems of mixtures of fluids. 
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